Список литературы

1. Дедов И.И., Кураева Т.Л., Петеркова В.А. Сахарный диабет у детей и подростков. Москва: ГЭОТАР-Медиа, 2013. 271 р.

2. Bingley P.J. Clinical Applications of Diabetes Antibody Testing // J. Clin. Endocrinol. Metab. 2010. Vol. 95, N 1. P. 25 - 33.

3. Noble J.A., Erlich H.A. Genetics of Type 1 Diabetes // Cold Spring Harb. Perspect. Med. 2012. Vol. 2, N 1. P. a007732-a007732.

4. Абрамов, Д.Д. et al. Сравнение вклада системы HLA и других генов иммунного ответа в формирование генетической предрасположенности к развитию сахарного диабета 1-го типа // Иммунология. Vol. 33, N 1. P. 4 - 6.

5. Дедов И.И. et al. Генетические факторы в развитии СД 1 типа в России // Молекулярная Медицина. 2003. Vol. 1, N 1. P. 31 - 37.

6. Кураева Т.Л. et al. Роль генетических факторов в формировании разного уровня заболеваемости сахарным диабетом 1-го типа в Европе и Российской Федерации // Проблемы Эндокринологии. 2011. Vol. 57, N 1. P. 19 - 25.

7. Титович Е.В. et al. Ассоциация сахарного диабета 1 типа с полиморфными аллелями генов HLA класса II в якутской и русской популяциях // Сахарный Диабет. 2009. Vol. 12, N 3. P. 26 - 32.

8. International Diabetes Federation. IDF Diabetes Atlas, 10th edn. Brussels, Belgium: International Diabetes Federation, 2021.

9. Mayer-Davis E.J. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Definition, epidemiology, and classification of diabetes in children and adolescents // Pediatr. Diabetes. 2018. Vol. 19. P. 7 - 19.

10. Александрова Г.А. et al. Общая заболеваемость детского населения России (0 - 14 лет) в 2019 году. Статистические материалы. Часть VI. Москва: Департамент мониторинга, анализа и стратегического развития здравоохранения Минздрава России, ФГБУ "ЦНИИОИЗ" Минздрава России, 2020.

11. Александрова Г.А. et al. Заболеваемость детского населения России (0 - 14 лет) в 2019 году с диагнозом, установленным впервые в жизни. Статистические материалы. Часть V. Москва: Департамент мониторинга, анализа и стратегического развития здравоохранения Минздрава России, ФГБУ "ЦНИИОИЗ" Минздрава России, 2020.

12. Александрова Г.А. et al. Заболеваемость детского населения России (15 - 17 лет) в 2019 году с диагнозом, установленным впервые в жизни. Статистические материалы. Часть IX. Москва: Департамент мониторинга, анализа и стратегического развития здравоохранения Минздрава России, ФГБУ "ЦНИИОИЗ" Минздрава России, 2020.

13. Александрова Г.А. et al. Общая заболеваемость детского населения России (15 - 17 лет) в 2019 году. Статистические материалы. Часть X. Москва: Департамент мониторинга, анализа и стратегического развития здравоохранения Минздрава России, ФГБУ "ЦНИИОИЗ" Минздрава России, 2020.

14. Дедов И.И., Шестакова М.В., Викулова О.К. Эпидемиология сахарного диабета в Российской Федерации: клинико-статистический анализ по данным Федерального регистра сахарного диабета. 2017. Vol. 1, N 20. P. 13 - 41.

15. Дедов И.И. et al. Сахарный диабет у детей и подростков по данным Федерального регистра Российской Федерации: динамика основных эпидемиологических характеристик за 2013 - 2016 гг. // Сахарный Диабет. 2017. Vol. 20, N 6. P. 392 - 402.

16. Libman I. et al. ISPAD Clinical Practice Consensus Guidelines 2022: Definition, epidemiology, and classification of diabetes in children and adolescents // Pediatr. Diabetes. 2022. Vol. 23, N 8. P. 1160 - 1174.

17. World Health Organization. Classification of diabetes mellitus. 2019.

18. American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021 // Diabetes Care. 2021. Vol. 44, N Supplement 1. P. S15 - S33.

19. World Health Organization, International Diabetes Federation. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF consultation. 2006.

20. Insel R.A. et al. Staging Presymptomatic Type 1 Diabetes: A Scientific Statement of JDRF, the Endocrine Society, and the American Diabetes Association // Diabetes Care. 2015. Vol. 38, N 10. P. 1964 - 1974.

21. Ziegler A.G. et al. Seroconversion to Multiple Islet Autoantibodies and Risk of Progression to Diabetes in Children // JAMA. 2013. Vol. 309, N 23. P. 2473.

22. American Diabetes Association Professional Practice Committee et al. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2025 // Diabetes Care. 2025. Vol. 48, N Supplement_1. P. S27 - S49.

23. Phillip M. et al. Consensus guidance for monitoring individuals with islet autoantibody-positive pre-stage 3 type 1 diabetes // Diabetologia. 2024. Vol. 67, N 9. P. 1731 - 1759.

24. American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018 // Diabetes Care. 2018. Vol. 41, N Supplement 1. P. S13 - S27.

25. Besser R.E.J. et al. Clinical Practice Consensus Guidelines 2022: Stages of type 1 diabetes in children and adolescents // Pediatr. Diabetes. 2022. Vol. 23, N 8. P. 1175 - 1187.

26. Hummel S. et al. Children diagnosed with presymptomatic type 1 diabetes through public health screening have milder diabetes at clinical manifestation // Diabetologia. 2023. Vol. 66, N 9. P. 1633 - 1642.

27. Winkler C. et al. Markedly reduced rate of diabetic ketoacidosis at onset of type 1 diabetes in relatives screened for islet autoantibodies: Diabetic ketoacidosis at onset // Pediatr. Diabetes. 2012. Vol. 13, N 4. P. 308 - 313.

28. Hekkala A.M. et al. Ketoacidosis at diagnosis of type 1 diabetes: Effect of prospective studies with newborn genetic screening and follow up of risk children // Pediatr. Diabetes. 2018. Vol. 19, N 2. P. 314 - 319.

29. Ziegler A.-G. et al. Yield of a Public Health Screening of Children for Islet Autoantibodies in Bavaria, Germany // JAMA. 2020. Vol. 323, N 4. P. 339.

30. Gibb F.W. et al. Risk of death following admission to a UK hospital with diabetic ketoacidosis // Diabetologia. 2016. Vol. 59, N 10. P. 2082 - 2087.

31. Virdi N. et al. Prevalence, Cost, and Burden of Diabetic Ketoacidosis // Diabetes Technol. Ther. 2023. Vol. 25, N S3. P. S-75-S-84.

32. Gaudieri P.A. et al. Cognitive Function in Children With Type 1 Diabetes // Diabetes Care. 2008. Vol. 31, N 9. P. 1892 - 1897.

33. Rawshani A. et al. Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study // The Lancet. 2018. Vol. 392, N 10146. P. 477 - 486.

34. Herold K.C. et al. An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes // N. Engl. J. Med. 2019. Vol. 381, N 7. P. 603 - 613.

35. Sims E.K. et al. Teplizumab improves and stabilizes beta cell function in antibody-positive high-risk individuals // Sci. Transl. Med. 2021. Vol. 13, N 583. P. eabc8980.

36. Watkins R.A. et al. Established and emerging biomarkers for the prediction of type 1 diabetes: a systematic review // Transl. Res. J. Lab. Clin. Med. 2014. Vol. 164, N 2. P. 110 - 121.

37. Dabelea D. et al. Etiological Approach to Characterization of Diabetes Type: The SEARCH for Diabetes in Youth Study // Diabetes Care. 2011. Vol. 34, N 7. P. 1628 - 1633.

38. Лаптев Д.Н. et al. Модель клинического прогнозирования сахарного диабета MODY типа у детей // Сахарный Диабет. 2024. Vol. 27, N 1. P. 33 - 40.

39. Zeitler P. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Type 2 diabetes mellitus in youth // Pediatr. Diabetes. 2018. Vol. 19. P. 28 - 46.

40. Ziegler R. et al. Frequency of SMBG correlates with HbA1c and acute complications in children and adolescents with type 1 diabetes // Pediatr. Diabetes. 2011. Vol. 12, N 1. P. 11 - 17.

41. DiMeglio L.A. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Glycemic control targets and glucose monitoring for children, adolescents, and young adults with diabetes // Pediatr. Diabetes. 2018. Vol. 19. P. 105 - 114.

42. Battelino T. et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range // Diabetes Care. 2019. Vol. 42, N 8. P. 1593 - 1603.

43. Writing Group for the DCCT/EDIC Research Group et al. Association between 7 years of intensive treatment of type 1 diabetes and long-term mortality // JAMA. 2015. Vol. 313, N 1. P. 45 - 53.

44. Writing Team for the DCCT/EDIC Research Group et al. Effects of Prior Intensive Insulin Therapy and Risk Factors on Patient-Reported Visual Function Outcomes in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Cohort // JAMA Ophthalmol. 2016. Vol. 134, N 2. P. 137 - 145.

45. de Bock M. et al. International Society for Pediatric and Adolescent Diabetes Clinical Practice Consensus Guidelines 2024: Glycemic Targets // Horm. Res. Paediatr. 2024. Vol. 97, N 6. P. 546 - 554.

46. American Diabetes Association Professional Practice Committee et al. 6. Glycemic Goals and Hypoglycemia: Standards of Care in Diabetes-2024 // Diabetes Care. 2024. Vol. 47, N Supplement_1. P. S111 - S125.

47. Karges B. et al. Hemoglobin A1c Levels and risk of severe hypoglycemia in children and young adults with type 1 diabetes from Germany and Austria: a trend analysis in a cohort of 37,539 patients between 1995 and 2012 // PLoS Med. 2014. Vol. 11, N 10. P. e1001742.

48. Beck R.W. et al. Validation of Time in Range as an Outcome Measure for Diabetes Clinical Trials // Diabetes Care. 2019. Vol. 42, N 3. P. 400 - 405.

49. Ranjan A.G. et al. Improved Time in Range Over 1 Year Is Associated With Reduced Albuminuria in Individuals With Sensor-Augmented Insulin Pump-Treated Type 1 Diabetes // Diabetes Care. 2020. Vol. 43, N 11. P. 2882 - 2885.

50. de Bock M. et al. ISPAD Clinical Practice Consensus Guidelines 2022: Glycemic targets and glucose monitoring for children, adolescents, and young people with diabetes // Pediatr. Diabetes. 2022. Vol. 23, N 8. P. 1270 - 1276.

51. Liu M. et al. A randomised, open-labelstudy of insulin glargine or neutral protamine Hagedorn insulin in Chinese paediatric patients with type 1 diabetes mellitus // BMC Endocr. Disord. 2016. Vol. 16, N 1. P. 67.

52. Schober E. et al. Comparative trial between insulin glargine and NPH insulin in children and adolescents with type 1 diabetes mellitus // J. Pediatr. Endocrinol. Metab. JPEM. 2002. Vol. 15, N 4. P. 369 - 376.

53. Danne T. et al. Pharmacokinetics, prandial glucose control, and safety of insulin glulisine in children and adolescents with type 1 diabetes // Diabetes Care. 2005. Vol. 28, N 9. P. 2100 - 2105.

54. Philotheou A. et al. Comparable Efficacy and Safety of Insulin Glulisine and Insulin Lispro When Given as Part of a Basal-Bolus Insulin Regimen in a 26-Week Trial in Pediatric Patients with Type 1 Diabetes // Diabetes Technol. Ther. 2011. Vol. 13, N 3. P. 327 - 334.

55. Holcombe J.H. et al. Comparison of insulin lispro with regular human insulin for the treatment of type 1 diabetes in adolescents // Clin. Ther. 2002. Vol. 24, N 4. P. 629 - 638.

56. Tupola S. et al. Post-prandial insulin lispro vs. human regular insulin in prepubertal children with Type 1 diabetes mellitus // Diabet. Med. J. Br. Diabet. Assoc. 2001. Vol. 18, N 8. P. 654 - 658.

57. Rutledge K.S. et al. Effectiveness of Postprandial Humalog in Toddlers With Diabetes // PEDIATRICS. 1997. Vol. 100, N 6. P. 968 - 972.

58. Deeb L.C. et al. Insulin Lispro Lowers Postprandial Glucose in Prepubertal Children With Diabetes // PEDIATRICS. 2001. Vol. 108, N 5. P. 1175 - 1179.

59. Battelino T. et al. Efficacy and safety of a fixed combination of insulin degludec/insulin aspart in children and adolescents with type 1 diabetes: A randomized trial // Pediatr. Diabetes. 2018. Vol. 19, N 7. P. 1263 - 1270.

60. Predieri B. et al. Switching From Glargine to Degludec: The Effect on Metabolic Control and Safety During 1-Year of Real Clinical Practice in Children and Adolescents With Type 1 Diabetes // Front. Endocrinol. 2018. Vol. 9. P. 462.

61. Thalange N. et al. The rate of hyperglycemia and ketosis with insulin degludec-based treatment compared with insulin detemir in pediatric patients with type 1 diabetes: An analysis of data from two randomized trials // Pediatr. Diabetes. 2019. Vol. 20, N 3. P. 314 - 320.

62. Thalange N. et al. Insulin degludec in combination with bolus insulin aspart is safe and effective in children and adolescents with type 1 diabetes: IDeg effective and safe in pediatric T1D // Pediatr. Diabetes. 2015. Vol. 16, N 3. P. 164 - 176.

63. Danne T. et al. Insulin detemir is characterized by a consistent pharmacokinetic profile across age-groups in children, adolescents, and adults with type 1 diabetes // Diabetes Care. 2003. Vol. 26, N 11. P. 3087 - 3092.

64. Robertson K.J. et al. Insulin detemir compared with NPH insulin in children and adolescents with Type 1 diabetes // Diabet. Med. J. Br. Diabet. Assoc. 2007. Vol. 24, N 1. P. 27 - 34.

65. Fath M. et al. Faster-acting insulin aspart provides faster onset and greater early exposure vs insulin aspart in children and adolescents with type 1 diabetes mellitus: FATH et al. // Pediatr. Diabetes. 2017. Vol. 18, N 8. P. 903 - 910.

66. Bode B.W. et al. Efficacy and Safety of Fast-Acting Insulin Aspart Compared With Insulin Aspart, Both in Combination With Insulin Degludec, in Children and Adolescents With Type 1 Diabetes: The onset 7 Trial // Diabetes Care. 2019. Vol. 42, N 7. P. 1255 - 1262.

67. Danne T. et al. Efficacy and Safety of Insulin Glargine 300 Units/mL (Gla-300) Versus Insulin Glargine 100 Units/mL (Gla-100) in Children and Adolescents (6-17 years) With Type 1 Diabetes: Results of the EDITION JUNIOR Randomized Controlled Trial // Diabetes Care. 2020. Vol. 43, N 7. P. 1512 - 1519.

68. Дедов И.И. et al. Проект рекомендаций Российской ассоциации эндокринологов по применению биосимиляров инсулина. 2021. Vol. 24, N 1. P. 76 - 79.

69. Danne T. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Insulin treatment in children and adolescents with diabetes // Pediatr. Diabetes. 2018. Vol. 19. P. 115 - 135.

70. Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: Diabetes Control and Complications Trial. Diabetes Control and Complications Trial Research Group // J. Pediatr. 1994. Vol. 125, N 2. P. 177 - 188.

71. Musen G. et al. Impact of diabetes and its treatment on cognitive function among adolescents who participated in the Diabetes Control and Complications Trial // Diabetes Care. 2008. Vol. 31, N 10. P. 1933 - 1938.

72. White N.H. et al. Beneficial effects of intensive therapy of diabetes during adolescence: outcomes after the conclusion of the Diabetes Control and Complications Trial (DCCT) // J. Pediatr. 2001. Vol. 139, N 6. P. 804 - 812.

73. Pop-Busui R. et al. Effects of Prior Intensive Insulin Therapy on Cardiac Autonomic Nervous System Function in Type 1 Diabetes Mellitus: The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study (DCCT/EDIC) // Circulation. 2009. Vol. 119, N 22. P. 2886 - 2893.

74. Рисунок 45 et al. Efficacy and Safety of Rapid-Acting Insulin Analogs in Special Populations with Type 1 Diabetes or Gestational Diabetes: Systematic Review and Meta-Analysis // Diabetes Ther. 2018. Vol. 9, N 3. P. 891 - 917.

75. Chase H.P. et al. Reduced hypoglycemic episodes and improved glycemic control in children with type 1 diabetes using insulin glargine and neutral protamine Hagedorn insulin // J. Pediatr. 2003. Vol. 143, N 6. P. 737 - 740.

76. Frid A.H. et al. New Insulin Delivery Recommendations // Mayo Clin. Proc. 2016. Vol. 91, N 9. P. 1231 - 1255.

77. Birkebaek N.H. et al. A 4-mm Needle Reduces the Risk of Intramuscular Injections Without Increasing Backflow to Skin Surface in Lean Diabetic Children and Adults // Diabetes Care. 2008. Vol. 31, N 9. P. e65.

78. Майоров А.Ю. et al. Техника инъекций и инфузии при лечении сахарного диабета. Методическое руководство. Москва: ООО "АРТИНФО", 2018. 64 p.

79. Birkebaek N.H. et al. A 4-mm needle reduces the risk of intramuscular injections without increasing backflow to skin surface in lean diabetic children and adults // Diabetes Care. 2008. Vol. 31, N 9. P. e65.

80. Hofman P.L. et al. Defining the ideal injection techniques when using 5-mm needles in children and adults // Diabetes Care. 2010. Vol. 33, N 9. P. 1940 - 1944.

81. Frid A.H. et al. New Insulin Delivery Recommendations // Mayo Clin. Proc. 2016. Vol. 91, N 9. P. 1231 - 1255.

82. Lo Presti D., Ingegnosi C., Strauss K. Skin and subcutaneous thickness at injecting sites in children with diabetes: ultrasound findings and recommendations for giving injection // Pediatr. Diabetes. 2012. Vol. 13, N 7. P. 525 - 533.

83. Zabaleta-del-Olmo E. et al. Safety of the reuse of needles for subcutaneous insulin injection: A systematic review and meta-analysis // Int. J. Nurs. Stud. 2016. Vol. 60. P. 121 - 132.

84. Рисунок 46 et al. Continuous subcutaneous insulin infusion vs. multiple daily injections in children with type 1 diabetes: a systematic review and meta-analysis of randomized control trials // Pediatr. Diabetes. 2009. Vol. 10, N 1. P. 52 - 58.

85. Benkhadra K. et al. Continuous subcutaneous insulin infusion versus multiple daily injections in individuals with type 1 diabetes: a systematic review and meta-analysis // Endocrine. 2017. Vol. 55, N 1. P. 77 - 84.

86. Pickup J.C., Sutton A.J. Severe hypoglycaemia and glycaemic control in Type 1 diabetes: meta-analysis of multiple daily insulin injections compared with continuous subcutaneous insulin infusion // Diabet. Med. J. Br. Diabet. Assoc. 2008. Vol. 25, N 7. P. 765 - 774.

87. Vallejo-Mora M.D.R. et al. The Calculating Boluses on Multiple Daily Injections (CBMDI) study: A randomized controlled trial on the effect on metabolic control of adding a bolus calculator to multiple daily injections in people with type 1 diabetes // J. Diabetes. 2017. Vol. 9, N 1. P. 24 - 33.

88. Vallejo Mora M.D.R. et al. Bolus Calculator Reduces Hypoglycemia in the Short Term and Fear of Hypoglycemia in the Long Term in Subjects with Type 1 Diabetes (CBMDI Study) // Diabetes Technol. Ther. 2017. Vol. 19, N 7. P. 402 - 409.

89. Ziegler R. et al. Use of an insulin bolus advisor improves glycemic control in multiple daily insulin injection (MDI) therapy patients with suboptimal glycemic control: first results from the ABACUS trial // Diabetes Care. 2013. Vol. 36, N 11. P. 3613 - 3619.

90. Schmidt S. et al. Use of an automated bolus calculator in MDI-treated type 1 diabetes: the BolusCal Study, a randomized controlled pilot study // Diabetes Care. 2012. Vol. 35, N 5. P. 984 - 990.

91. Ramotowska A. et al. The effect of using the insulin pump bolus calculator compared to standard insulin dosage calculations in patients with type 1 diabetes mellitus - systematic review // Exp. Clin. Endocrinol. Diabetes Off. J. Ger. Soc. Endocrinol. Ger. Diabetes Assoc. 2013. Vol. 121, N 5. P. 248 - 254.

92. Wong J.C. et al. A Minority of Patients with Type 1 Diabetes Routinely Downloads and Retrospectively Reviews Device Data // Diabetes Technol. Ther. 2015. Vol. 17, N 8. P. 555 - 562.

93. Slover R.H. et al. Effectiveness of sensor-augmented pump therapy in children and adolescents with type 1 diabetes in the STAR 3 study // Pediatr. Diabetes. 2012. Vol. 13, N 1. P. 6 - 11.

94. Ly T.T. et al. Effect of sensor-augmented insulin pump therapy and automated insulin suspension vs standard insulin pump therapy on hypoglycemia in patients with type 1 diabetes: a randomized clinical trial // JAMA. 2013. Vol. 310, N 12. P. 1240 - 1247.

95. Abraham M.B. et al. Reduction in Hypoglycemia With the Predictive Low-Glucose Management System: A Long-term Randomized Controlled Trial in Adolescents With Type 1 Diabetes // Diabetes Care. 2018. Vol. 41, N 2. P. 303 - 310.

96. Battelino T. et al. Prevention of Hypoglycemia With Predictive Low Glucose Insulin Suspension in Children With Type 1 Diabetes: A Randomized Controlled Trial // Diabetes Care. 2017. Vol. 40, N 6. P. 764 - 770.

97. Sherr J.L. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Diabetes technologies // Pediatr. Diabetes. 2018. Vol. 19. P. 302 - 325.

98. Phelan H. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Diabetes education in children and adolescents // Pediatr. Diabetes. 2018. Vol. 19. P. 75 - 83.

99. Рисунок 47, Рисунок 48 The effect of bolus and food calculator Diabetics on glucose variability in children with type 1 diabetes treated with insulin pump: the results of RCT // Pediatr. Diabetes. 2012. Vol. 13, N 7. P. 534 - 539.

100. Miller K.M. et al. Evidence of a strong association between frequency of self-monitoring of blood glucose and hemoglobin A1c levels in T1D exchange clinic registry participants // Diabetes Care. 2013. Vol. 36, N 7. P. 2009 - 2014.

101. Ziegler R. et al. Frequency of SMBG correlates with HbA1c and acute complications in children and adolescents with type 1 diabetes // Pediatr. Diabetes. 2011. Vol. 12, N 1. P. 11 - 17.

102. Bohn B. et al. 20 Years of Pediatric Benchmarking in Germany and Austria: Age-Dependent Analysis of Longitudinal Follow-Up in 63,967 Children and Adolescents with Type 1 Diabetes // PloS One. 2016. Vol. 11, N 8. P. e0160971.

103. Battelino T. et al. The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: a randomised controlled trial // Diabetologia. 2012. Vol. 55, N 12. P. 3155 - 3162.

104. El-Laboudi A.H. et al. Measures of Glycemic Variability in Type 1 Diabetes and the Effect of Real-Time Continuous Glucose Monitoring // Diabetes Technol. Ther. 2016. Vol. 18, N 12. P. 806 - 812.

105. Bergenstal R.M. et al. Sensor-Augmented Pump Therapy for A1C Reduction (STAR 3) Study: Results from the 6-month continuation phase // Diabetes Care. 2011. Vol. 34, N 11. P. 2403 - 2405.

106. Piona C. et al. Non-adjunctive flash glucose monitoring system use during summer-camp in children with type 1 diabetes: The free-summer study // Pediatr. Diabetes. 2018. Vol. 19, N 7. P. 1285 - 1293.

107. Campbell F.M. et al. Outcomes of using flash glucose monitoring technology by children and young people with type 1 diabetes in a single arm study // Pediatr. Diabetes. 2018. Vol. 19, N 7. P. 1294 - 1301.

108. Рисунок 49 et al. Real-time CGM Is Superior to Flash Glucose Monitoring for Glucose Control in Type 1 Diabetes: The CORRIDA Randomized Controlled Trial // Diabetes Care. 2020. Vol. 43, N 11. P. 2744 - 2750.

109. Laptev D.N. et al. The use of Flash glucose monitoring in children with type 1 diabetes mellitus in real clinical practice // Diabetes Mellit. 2021. Vol. 24, N 6. P. 504 - 510.

110. Петеркова В.А. et al. Оценка эффективности амбулаторного наблюдения детей и подростков с сахарным диабетом 1-го типа при регулярном использовании профессионального непрерывного мониторинга уровня глюкозы // Проблемы эндокринологии. 2020. Vol. 66, N 1. P. 14 - 22.

111. Von Sengbusch S. et al. Monthly video consultation for children and adolescents with type 1 diabetes mellitus during the COVID-19 pandemic // Diabetes Res. Clin. Pract. 2022. Vol. 193. P. 110135.

112. Kaushal T. et al. Improved CGM Glucometrics and More Visits for Pediatric Type 1 Diabetes Using Telemedicine During 1 Year of COVID-19 // J. Clin. Endocrinol. Metab. 2022. Vol. 107, N 10. P. e4197 - e4202.

113. Kimbell B. et al. Parents' views about healthcare professionals having real-time remote access to their young child's diabetes data: Qualitative study // Pediatr. Diabetes. 2022. Vol. 23, N 6. P. 799 - 808.

114. Pickup J.C., Freeman S.C., Sutton A.J. Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data // BMJ. 2011. Vol. 343. P. d3805.

115. Battelino T. et al. Effect of Continuous Glucose Monitoring on Hypoglycemia in Type 1 Diabetes // Diabetes Care. 2011. Vol. 34, N 4. P. 795 - 800.

116. Hirsch I.B. et al. Sensor-augmented insulin pump therapy: results of the first randomized treat-to-target study // Diabetes Technol. Ther. 2008. Vol. 10, N 5. P. 377 - 383.

117. Лаптев Д.Н. et al. Результаты клинической апробации системы FreeStyle Libre у детей с сахарным диабетом 1 типа: улучшение гликемического контроля в сочетании со снижением риска тяжелой гипогликемии и диабетического кетоацидоза // Проблемы Эндокринологии. 2022. Vol. 68, N 3. P. 86 - 92.

118. Suzuki J. et al. Association between scanning frequency of flash glucose monitoring and continuous glucose monitoring-derived glycemic makers in children and adolescents with type 1 diabetes // Pediatr. Int. 2021. Vol. 63, N 2. P. 154 - 159.

119. Urakami T. et al. Frequent scanning using flash glucose monitoring contributes to better glycemic control in children and adolescents with type 1 diabetes // J. Diabetes Investig. 2022. Vol. 13, N 1. P. 185 - 190.

120. Boucher S.E. et al. Effect of 6 months' flash glucose monitoring in adolescents and young adults with type 1 diabetes and suboptimal glycaemic control: managing diabetes in a "flash" randomised controlled trial protocol // BMC Endocr. Disord. 2019. Vol. 19, N 1. P. 50.

121. Heinemann L. et al. Real-time continuous glucose monitoring in adults with type 1 diabetes and impaired hypoglycaemia awareness or severe hypoglycaemia treated with multiple daily insulin injections (HypoDE): a multicentre, randomised controlled trial // The Lancet. 2018. Vol. 391, N 10128. P. 1367 - 1377.

122. van Beers C.A.J. et al. Continuous glucose monitoring for patients with type 1 diabetes and impaired awareness of hypoglycaemia (IN CONTROL): a randomised, open-label, crossover trial // Lancet Diabetes Endocrinol. 2016. Vol. 4, N 11. P. 893 - 902.

123. Choudhary P. et al. Real-Time Continuous Glucose Monitoring Significantly Reduces Severe Hypoglycemia in Hypoglycemia-Unaware Patients With Type 1 Diabetes // Diabetes Care. 2013. Vol. 36, N 12. P. 4160 - 4162.

124. Messer L.H. et al. Basal-IQ technology in the real world: satisfaction and reduction of diabetes burden in individuals with type 1 diabetes // Diabet. Med. 2021. Vol. 38, N 6. P. e14381.

125. Рисунок 50 et al. Reducing Hypoglycemia in the Real World: A Retrospective Analysis of Predictive Low-Glucose Suspend Technology in an Ambulatory Insulin-Dependent Cohort // Diabetes Technol. Ther. 2019. Vol. 21, N 9. P. 478 - 484.

126. Pinsker J.E. et al. Real-World Improvements in Hypoglycemia in an Insulin-Dependent Cohort With Diabetes Mellitus Pre/Post Tandem Basal-Iq Technology Remote Software Update // Endocr. Pract. 2020. Vol. 26, N 7. P. 714 - 721.

127. Forlenza G.P. et al. Predictive Low-Glucose Suspend Reduces Hypoglycemia in Adults, Adolescents, and Children With Type 1 Diabetes in an At-Home Randomized Crossover Study: Results of the PROLOG Trial // Diabetes Care. 2018. Vol. 41, N 10. P. 2155 - 2161.

128. Bergenstal R.M. et al. Safety of a Hybrid Closed-Loop Insulin Delivery System in Patients With Type 1 Diabetes // JAMA. 2016. Vol. 316, N 13. P. 1407.

129. Carlson A.L. et al. Safety and Glycemic Outcomes During the MiniMedTM Advanced Hybrid Closed-Loop System Pivotal Trial in Adolescents and Adults with Type 1 Diabetes // Diabetes Technol. Ther. 2022. Vol. 24, N 3. P. 178 - 189.

130. Brown S.A. et al. Multicenter Trial of a Tubeless, On-Body Automated Insulin Delivery System With Customizable Glycemic Targets in Pediatric and Adult Participants With Type 1 Diabetes // Diabetes Care. 2021. Vol. 44, N 7. P. 1630 - 1640.

131. Von Dem Berge T. et al. In-home use of a hybrid closed loop achieves time-in-range targets in preschoolers and school children: Results from a randomized, controlled, crossover trial // Diabetes Obes. Metab. 2022. Vol. 24, N 7. P. 1319 - 1327.

132. Forlenza G.P. et al. Glycemic outcomes of children 2-6 years of age with type 1 diabetes during the pediatric MiniMed TM 670G system trial // Pediatr. Diabetes. 2022. Vol. 23, N 3. P. 324 - 329.

133. DAFNE Study Group. Training in flexible, intensive insulin management to enable dietary freedom in people with Type 1 diabetes: dose adjustment for normal eating (DAFNE) randomized controlled trial // Diabet. Med. J. Br. Diabet. Assoc. 2003. Vol. 20 Suppl 3. P. 4 - 5.

134. Hampson S.E. et al. Effects of educational and psychosocial interventions for adolescents with diabetes mellitus: a systematic review // Health Technol. Assess. Winch. Engl. 2001. Vol. 5, N 10. P. 1 - 79.

135. Smart C.E. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Nutritional management in children and adolescents with diabetes // Pediatr. Diabetes. 2018. Vol. 19. P. 136 - 154.

136. Mann J.I. et al. Evidence-based nutritional approaches to the treatment and prevention of diabetes mellitus // Nutr. Metab. Cardiovasc. Dis. NMCD. 2004. Vol. 14, N 6. P. 373 - 394.

137. Delahanty L.M. et al. Association of diet with glycated hemoglobin during intensive treatment of type 1 diabetes in the Diabetes Control and Complications Trial // Am. J. Clin. Nutr. 2009. Vol. 89, N 2. P. 518 - 524.

138. Bell K.J. et al. Impact of fat, protein, and glycemic index on postprandial glucose control in type 1 diabetes: implications for intensive diabetes management in the continuous glucose monitoring era // Diabetes Care. 2015. Vol. 38, N 6. P. 1008 - 1015.

139. Nansel T.R., Lipsky L.M., Liu A. Greater diet quality is associated with more optimal glycemic control in a longitudinal study of youth with type 1 diabetes // Am. J. Clin. Nutr. 2016. Vol. 104, N 1. P. 81 - 87.

140. Paterson M.A. et al. Increasing the protein quantity in a meal results in dose-dependent effects on postprandial glucose levels in individuals with Type 1 diabetes mellitus // Diabet. Med. J. Br. Diabet. Assoc. 2017. Vol. 34, N 6. P. 851 - 854.

141. Smart C.E.M. et al. Both Dietary Protein and Fat Increase Postprandial Glucose Excursions in Children With Type 1 Diabetes, and the Effect Is Additive // Diabetes Care. 2013. Vol. 36, N 12. P. 3897 - 3902.

142. Рисунок 51, Рисунок 52, Groele L. Does the Fat-Protein Meal Increase Postprandial Glucose Level in Type 1 Diabetes Patients on Insulin Pump: The Conclusion of a Randomized Study // Diabetes Technol. Ther. 2012. Vol. 14, N 1. P. 16 - 22.

143. Cameron F. et al. Lessons from the Hvidoere International Study Group on childhood diabetes: be dogmatic about outcome and flexible in approach: Hvidoere group studies // Pediatr. Diabetes. 2013. Vol. 14, N 7. P. 473 - 480.

144. Quirk H. et al. Physical activity interventions in children and young people with Type 1 diabetes mellitus: a systematic review with meta-analysis // Diabet. Med. J. Br. Diabet. Assoc. 2014. Vol. 31, N 10. P. 1163 - 1173.

145. MacMillan F. et al. A systematic review of physical activity and sedentary behavior intervention studies in youth with type 1 diabetes: study characteristics, intervention design, and efficacy // Pediatr. Diabetes. 2014. Vol. 15, N 3. P. 175 - 189.

146. Рисунок 53 et al. Regular physical activity as a physiological factor contributing to extend partial remission time in children with new onset diabetes mellitus-Two years observation // Pediatr. Diabetes. 2020. Vol. 21, N 5. P. 800 - 807.

147. Pivovarov J.A., Taplin C.E., Riddell M.C. Current perspectives on physical activity and exercise for youth with diabetes // Pediatr. Diabetes. 2015. Vol. 16, N 4. P. 242 - 255.

148. Tikkanen-Dolenc H. et al. Physical Activity Reduces Risk of Premature Mortality in Patients With Type 1 Diabetes With and Without Kidney Disease // Diabetes Care. 2017. Vol. 40, N 12. P. 1727 - 1732.

149. Adolfsson P. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Exercise in children and adolescents with diabetes // Pediatr. Diabetes. 2018. Vol. 19. P. 205 - 226.

150. Young V. et al. Eating problems in adolescents with Type 1 diabetes: a systematic review with meta-analysis // Diabet. Med. J. Br. Diabet. Assoc. 2013. Vol. 30, N 2. P. 189 - 198.

151. Kongkaew C. et al. Depression and adherence to treatment in diabetic children and adolescents: a systematic review and meta-analysis of observational studies // Eur. J. Pediatr. 2014. Vol. 173, N 2. P. 203 - 212.

152. Шашель В.А., Черняк И.Ю. Комплексное восстановительное лечение детей, больных сахарным диабетом 1-го типа, в санаторно-курортных условиях. 2011. N 4. P. 30 - 32.

153. Лагунова et al. State of the adaptive-compensatory mechanisms in children with type 1 diabetes mellitus and its changes after sanatorium-resort treatment // J. New Med. Technol. EJournal. 2014. Vol. 8, N 1. P. 0-0.

154. Pihoker C. et al. ISPAD Clinical Practice Consensus Guidelines 2018: The delivery of ambulatory diabetes care to children and adolescents with diabetes // Pediatr. Diabetes. 2018. Vol. 19. P. 84 - 104.

155. Shah A.C., Badawy S.M. Telemedicine in Pediatrics: Systematic Review of Randomized Controlled Trials // JMIR Pediatr. Parent. 2021. Vol. 4, N 1. P. e22696.

156. Lee S.W.H., Ooi L., Lai Y.K. Telemedicine for the Management of Glycemic Control and Clinical Outcomes of Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Studies // Front. Pharmacol. 2017. Vol. 8. P. 330.

157. Faruque L.I. et al. Effect of telemedicine on glycated hemoglobin in diabetes: a systematic review and meta-analysis of randomized trials // Can. Med. Assoc. J. 2017. Vol. 189, N 9. P. E341 - E364.

158. Cho Y.H. et al. Microvascular complications assessment in adolescents with 2- to 5-yr duration of type 1 diabetes from 1990 to 2006 // Pediatr. Diabetes. 2011. Vol. 12, N 8. P. 682 - 689.

159. Bjornstad P. et al. ISPAD Clinical Practice Consensus Guidelines 2022: Microvascular and macrovascular complications in children and adolescents with diabetes // Pediatr. Diabetes. 2022. Vol. 23, N 8. P. 1432 - 1450.

160. Chiang J.L. et al. Type 1 Diabetes in Children and Adolescents: A Position Statement by the American Diabetes Association // Diabetes Care. 2018. Vol. 41, N 9. P. 2026 - 2044.

161. Donaghue K.C. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Microvascular and macrovascular complications in children and adolescents // Pediatr. Diabetes. 2018. Vol. 19. P. 262 - 274.

162. Sivaprasad S. et al. Clinical efficacy of intravitreal aflibercept versus panretinal photocoagulation for best corrected visual acuity in patients with proliferative diabetic retinopathy at 52 weeks (CLARITY): a multicentre, single-blinded, randomised, controlled, phase 2b, non-inferiority trial // Lancet Lond. Engl. 2017. Vol. 389, N 10085. P. 2193 - 2203.

163. Stahl A. et al. Ranibizumab versus laser therapy for the treatment of very low birthweight infants with retinopathy of prematurity (RAINBOW): an open-label randomised controlled trial // Lancet Lond. Engl. 2019. Vol. 394, N 10208. P. 1551 - 1559.

164. Дедов И.И., Шестакова М.В. Осложнения сахарного диабета: лечение и профилактика. Москва: МИА, 2017. 743 p.

165. de Boer I.H., DCCT/EDIC Research Group. Kidney disease and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. // Diabetes Care. 2014. Vol. 37, N 1. P. 24 - 30.

166. Fox C.S. et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. // Lancet. 2012. Vol. 380, N 9854. P. 1662 - 1673.

167. National Kidney Foundation. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease // Kidney Int Suppl. 2013. Vol. 3, N 1. P. 1 - 150.

168. Stevens P.E., Levin A., Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline // Ann. Intern. Med. 2013. Vol. 158, N 11. P. 825 - 830.

169. Schwartz G.J. et al. New equations to estimate GFR in children with CKD // J. Am. Soc. Nephrol. JASN. 2009. Vol. 20, N 3. P. 629 - 637.

170. Schwartz G.J., Work D.F. Measurement and estimation of GFR in children and adolescents // Clin. J. Am. Soc. Nephrol. CJASN. 2009. Vol. 4, N 11. P. 1832 - 1843.

171. Copeland K.C. et al. Characteristics of Adolescents and Youth with Recent-Onset Type 2 Diabetes: The TODAY Cohort at Baseline // J. Clin. Endocrinol. Metab. 2011. Vol. 96, N 1. P. 159 - 167.

172. TODAY Study Group. Rapid Rise in Hypertension and Nephropathy in Youth With Type 2 Diabetes: The TODAY clinical trial // Diabetes Care. 2013. Vol. 36, N 6. P. 1735 - 1741.

173. American Diabetes Association. 10. Microvascular Complications and Foot Care: Standards of Medical Care in Diabetes-2018 // Diabetes Care. 2018. Vol. 41, N Supplement 1. P. S105 - S118.

174. Cook J. et al. Angiotensin converting enzyme inhibitor therapy to decrease microalbuminuria in normotensive children with insulin-dependent diabetes mellitus // J. Pediatr. 1990. Vol. 117, N 1. P. 39 - 45.

175. Rudberg S. et al. Enalapril reduces microalbuminuria in young normotensive Type 1 (insulin-dependent) diabetic patients irrespective of its hypotensive effect // Diabetologia. 1990. Vol. 33, N 8. P. 470 - 476.

176. Soffer B. et al. A double-blind, placebo-controlled, dose-response study of the effectiveness and safety of lisinopril for children with hypertension // Am. J. Hypertens. 2003. Vol. 16, N 10. P. 795 - 800.

177. Рисунок 54 et al. Cardiovascular and Renal Outcomes of Renin-Angiotensin System Blockade in Adult Patients with Diabetes Mellitus: A Systematic Review with Network Meta-Analyses // PLOS Med. / ed. Taal M.W. 2016. Vol. 13, N 3. P. e1001971.

178. Рисунок 55 et al. ISPAD Clinical Practice Consensus Guidelines 2022: Other complications and associated conditions in children and adolescents with type 1 diabetes // Pediatr. Diabetes. 2022. Vol. 23, N 8. P. 1451 - 1467.

179. Wolfsdorf J.I. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Diabetic ketoacidosis and the hyperglycemic hyperosmolar state // Pediatr. Diabetes. 2018. Vol. 19. P. 155 - 177.

180. Abraham M.B. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Assessment and management of hypoglycemia in children and adolescents with diabetes // Pediatr. Diabetes. 2018. Vol. 19. P. 178 - 192.

181. Tinti D., Rabbone I. Mini-doses of glucagon to prevent hypoglycemia in children with type 1 diabetes refusing food: a case series // Acta Diabetol. 2019.

182. Shun C.B. et al. Thyroid autoimmunity in Type 1 diabetes: systematic review and meta-analysis // Diabet. Med. J. Br. Diabet. Assoc. 2014. Vol. 31, N 2. P. 126 - 135.

183. Wang J. et al. Association of autoimmune thyroid disease with type 1 diabetes mellitus and its ultrasonic diagnosis and management // World J. Diabetes. 2024. Vol. 15, N 3. P. 348 - 360.

184. Mahmud F.H. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Other complications and associated conditions in children and adolescents with type 1 diabetes // Pediatr. Diabetes. 2018. Vol. 19. P. 275 - 286.

185. Pham-Short A. et al. Screening for Celiac Disease in Type 1 Diabetes: A Systematic Review // PEDIATRICS. 2015. Vol. 136, N 1. P. e170 - e176.

186. Samara-Boustani D. et al. High prevalence of hirsutism and menstrual disorders in obese adolescent girls and adolescent girls with type 1 diabetes mellitus despite different hormonal profiles // Eur. J. Endocrinol. 2012. Vol. 166, N 2. P. 307 - 316.

187. Regnell S.E., Lernmark A. Hepatic Steatosis in Type 1 Diabetes // Rev. Diabet. Stud. 2011. Vol. 8, N 4. P. 454 - 467.

188. Abdallah H.R. et al. Clinical and diagnostic characteristics of non-alcoholic fatty liver disease among Egyptian children and adolescents with type1 diabetes // Diabetol. Metab. Syndr. 2023. Vol. 15, N 1. P. 52.

189. Teasdale G., Jennett B. ASSESSMENT OF COMA AND IMPAIRED CONSCIOUSNESS // The Lancet. 1974. Vol. 304, N 7872. P. 81 - 84.