VI. Методика расчета оценки рисков технического регулирования разной природы
46. В рамках проведения оценки рисков используются термины с соответствующими определениями:
безопасность - состояние, при котором отсутствует недопустимый риск, связанный с возможностью причинения вреда жизни или здоровью граждан, имуществу физических или юридических лиц, государственному или муниципальному имуществу, окружающей среде, жизни или здоровью животных или растений;
риск - сочетание вероятности причинения вреда и последствий этого вреда для жизни или здоровья человека, имущества, окружающей среды, жизни или здоровья животных и растений;
ущерб - нанесение физического повреждения или вреда здоровью людей, или вреда имуществу или окружающей среде;
оценка риска - система мероприятий, включающая анализ информации, направленных на выявление опасностей (факторов, способных нанести вред) и оценивания риска.
47. Оценка риска включает в себя анализ и исследование информации о риске. Оценка риска помогает в принятии решений относительно необходимости управления риском при формировании требований ТР, учета риска при выборе форм и схем оценки (подтверждения) соответствия продукции обязательным требованиям ТР, принятия иных решений, связанных с реализацией требований Закона, например, в отношении процедур государственного контроля (надзора) за соблюдением требований ТР в рамках риск-ориентированного подхода.
Оценка риска включает анализ вероятности и последствий идентифицированных опасных событий с учетом наличия и эффективности применяемых способов управления (защиты). Данные о вероятности событий и их последствиях используют для определения величины риска.
Кроме того, оценка риска включает анализ источников опасных событий, их последствий и вероятностей появления этих событий. При этом идентифицируются факторы, влияющие на вероятность события и его последствия. Событие может иметь множественные последствия и может влиять на различные цели.
Оценка риска обычно включает оценку диапазона возможных последствий события, ситуации или обстоятельств и соответствующих им вероятностей для определения уровня риска. В некоторых случаях, например, когда последствия незначительны или вероятность события чрезвычайно низка, для принятия решений может быть достаточно исследований только одного параметра.
48. Методы, используемые при анализе риска, могут быть качественными, количественными или смешанными. Степень глубины и детализации анализа зависит от конкретной ситуации, доступности достоверных данных и потребностей организации, связанных с принятием решений.
При качественной оценке риска определяют последствия, вероятность и уровень риска по шкале "высокий", "средний" и "низкий"; оценка последствий и вероятности может быть объединена; сравнительную оценку уровня риска в этом случае проводят в соответствии с качественными критериями.
При количественном анализе оценивают значимость последствий (ущерб), их вероятности и получают значение уровня риска в определенных единицах ущерба. Полный количественный анализ не всегда может быть возможен из-за недостаточной информации об анализируемом ОТР, недостатка исходных данных или потому, что трудозатраты на количественный анализ слишком велики.
В случае применения количественного анализа необходимо иметь в виду, что значения вычисленного риска являются только оценкой, то есть случайной величиной, зависящей от полноты анализа, точности исходных данных для расчета и других факторов. Поэтому этой оценке присуща значительная неопределенность, которую необходимо согласовать с уровнем точности используемых данных.
По этой причине количественные методы расчета риска причинения вреда используются в основном при проектировании (конструировании) изделий. В то же время опыт применения качественных методов анализа риска в задачах технического регулирования показал их практическую пригодность, поэтому в настоящих Методических рекомендациях упор сделан на качественные методы анализа риска, при этом, учитывая назначение документа, описание количественных методов сведено до необходимого минимума, с упором на процедурные аспекты, без приведения расчетных формул.
49. Уровни риска выражаются в соответствующих терминах (шкалах) для конкретного вида риска в наиболее удобной форме. В некоторых случаях значение риска может быть выражено в виде распределения вероятностей диапазона последствий.
50. Выбор методов, используемых при оценке риска, зависит от вида объекта технического регулирования. Для продукции, которая расходует свой ресурс при эксплуатации (машинотехническая продукция), наиболее эффективны качественные и количественные методы оценки риска, установленные в ГОСТ Р ИСО/МЭК 31010-2011 "Менеджмент риска. Методы оценки риска".
Для продукции, которая расходуется в процессе применения или потребления (продукции, обладающей комплексом разнородных факторов опасности, в основном, химической и биологической) наиболее эффективны количественные методы, установленные в документе ЕЭС "Методология оценки рисков здоровью населения при воздействии химических, физических и биологических факторов для определения показателей безопасности продукции (товаров)".
Кроме того, выбор методов оценки риска зависит от объема информации относительно процессов, приводящих к причинению вреда, возможности получения сведений, характеризующих опасности (таких как, виды опасности, идентификация опасностей) и других факторов, важных для оценки риска. Чем меньше предварительной информации, касающейся безопасности объекта технического регулирования, тем менее надежными будут методы, которыми можно воспользоваться. В этом случае наиболее подходящими могут быть качественные методы оценки безопасности или количественные методы типа АВПКО (FMECA). Чем больше предварительной информации, касающейся безопасности ОТР, тем более "точными", более надежными методами можно руководствоваться.
Выбор метода оценки риска зависит также от стадии жизненного цикла продукции. Для "ранних" стадий жизненного цикла продукции, когда отсутствуют необходимые сведения о возможных видах опасностей, присущих рассматриваемой продукции, о сценариях развития опасностей, необходимо применять более "грубые" методы оценки риска, соответствующие существенным неопределенностям в исходных данных. "Компенсация" недостаточности исходных данных связана с постулированием возможных сценариев развития опасностей, с одной стороны, и привлечением дополнительной информации о реализованных случаях причинения вреда для продукции, которая может рассматриваться в качестве аналога.
51. В общем случае выбор методов оценки рисков определяется следующими основными факторами:
наличием информации о реализации опасности на предшествующих стадиях жизненного цикла ОТР или ОТР, который можно признать аналогом;
наличием исходных баз данных (знаний), методической базы для оценки риска;
наличием опыта постановки и решения задач оценки риска;
наличием обоснованной мотивации оценки риска и управления рисками для повышения безопасности и уровня защищенности от чрезвычайных ситуаций.
Количественные методы полезны для того, чтобы оценить альтернативные меры по обеспечению безопасности, определить, какой из них дает лучшую защиту.
В случаях, когда полный количественный анализ не всегда возможен из-за недостатка информации (данных) об объекте технического регулирования, условиях его применения, возможных отказах (авариях), влиянии человеческого фактора (вероятности принятия человеком ошибочных решений и совершения ошибочных действий) и по иным причинам, может оказаться эффективным сравнительное количественное или качественное ранжирование риска специалистами, хорошо информированными в данной области.
На стадии идентификации опасностей и предварительных оценок риска рекомендуется применять методы качественного анализа, опирающиеся на практический опыт экспертов и специальные вспомогательные средства (анкеты, бланки, опросные листы, инструкции).
Перечисленные методы могут применяться изолированно или в дополнение друг к другу, причем методы качественного анализа могут включать количественные критерии риска (в основном по экспертным оценкам). По возможности в полном количественном анализе риска используются результаты качественного анализа опасностей.
52. В ГОСТ Р ИСО/МЭК 31010-2011 "Менеджмент риска. Методы оценки риска" в систематизированном виде в табличной форме представлен анализ факторов, влияющих на выбор метода оценки риска. На основе этого анализа в приложении N 1 приведен в табличной форме анализ факторов, влияющих на выбор методов оценки риска причинения вреда различной природы. В число анализируемых методов вошли только те методы, которые непосредственно связаны с идентификацией риска, поэтому такие методы оценки риска как анализ первопричины (RCA); анализ уровней защиты (LOPA); анализ "галстук-бабочка"; анализ скрытых дефектов (SA); анализ эффективности затрат (CBA); статистические методы (например, моделирования и другие) анализу не подвергались.
Согласно ГОСТ Р ИСО/МЭК 31010-2011, факторами, влияющими на выбор метода оценки риска, являются:
сложность проблемы и методов, необходимых для оценки риска;
характер и степень неопределенности оценки риска, основанной на доступной информации и соответствии целям;
необходимые ресурсы (например, временные, информационные);
возможность получения количественных оценок выходных данных.
53. Расчет оценки рисков технического регулирования.
53.1. Определяющие отношения, функционалы и параметры рисков
Оценка риска - это ряд логических шагов, позволяющих обеспечить систематическим образом рассмотрение факторов опасности. Основной для оценки рисков R в рамках технического регулирования являются функционал F, связывающий вероятность P возникновения неблагоприятного события и математическое ожидание ущерба U от этого неблагоприятного события.
где i - виды неблагоприятных событий;
C - весовые функции, учитывающие взаимовлияние рисков.
В общем случае для качественного и количественного анализа рисков по выражению (1) на базе исследований сложных динамических нелинейных опасных процессов (возникновения нарушений, отказов, повреждений, разрушений, гибели, аварий, катастроф) ведется построение физических и математических моделей, анализируемых ОТР, создающих угрозы как отдельным видам безопасности, указанным в статье 7 Закона, так и комплексной безопасности по соответствующим сочетаниям и видам безопасности.
В этих моделях и сценариях возникновения и развития неблагоприятных событий используются как заданные, так и расчетные и постулированные опасные процессы, развивающиеся во времени t. При таком подходе используются временные шкалы рисков R(t).
53.2 Общий ущерб U (или его составляющие Ui) определяется через обобщенный функционал (сумму) ущербов, наносимых населению N, объектам техносферы T и окружающей среде S.
Ущербы U по (2) и соответственно риски R по (1) определяются в общем случае большим числом показателей. На современном этапе технического регулирования величины U и R от неблагоприятных событий можно оценивать по двум показателям: экономическим - в рублях (условных единицах) и человеческих потерях (летальных или нелетальных исходах).
53.3. Вероятность P возникновения анализируемого неблагоприятного события (или его составляющих Pi) в общем случае определяется как функционал вероятностей, зависящий от источников, соответствующих поражающих факторов и объектов поражения - человек N, объект техносферы T и окружающая среда S.
54. Общая методология расчета оценки риска.
54.1. В общем случае в рамках технического регулирования выбор методов оценки рисков определяется следующими основными факторами:
видами безопасности (ВБ) по пункту 1 статьи 7 Закона;
исходной потенциальной опасностью ОТР, создающей угрозы всем основным видам безопасности;
увеличением угроз по мере перехода ОТР от штатных (предусмотренных нормами и правилами) состояний к нештатным - поврежденным, аварийным и катастрофическим;
наличием исходной информации о реализации рисков или об оценках рисков;
наличием или созданием исходных баз знаний для расчетно-экспериментального определения функционалов F и параметров (U, P) рисков R в соответствии с выражениями (1) - (3);
наличием правовой или нормативно-технической базы для обязательного определения рисков R;
наличием международного, национального, отраслевого и объектового опыта постановки и решения задач оценки рисков.
54.2. В качестве основных источников опасностей для всех анализируемых видов безопасности при реализации рисков принимаются:
опасное контролируемое или неконтролируемое высвобождение энергии E (кинетической, взрывной, тепловой, световой, электрической, электромагнитной), накопленной в ОТР на различных стадиях жизненного цикла;
опасный контролируемый или неконтролируемый выброс веществ W (радиационно, химически и биологически опасных);
разрушение необходимых или возникновение опасных (вредных) потоков информации I (в управляющих, контролирующих, оповещающих системах ОТР).
54.3. Для каждого из указанных в статье 7 Закона видов безопасности и источников опасностей по пункту 54.2 анализируются основные группы поражающих факторов:
объемы выделяемой энергии E, концентрации dE/dF энергии, скорость (или импульс) выделения энергии dE/dt;
массы W, концентрации dW/dF и дозы воздействия (dW/dF)dt опасных веществ;
объемы I и скорости изменения потерянных или вредных потоков информации dI/dt;
где F - площадь воздействия фактора.
54.4. Для каждой из указанных в пункте 54.3 групп поражающих факторов анализируются критические (Ec, Wc, Ic) и предельно допустимые характеристики ([E], [W], [I]) сопротивления человека, объектов техносферы и окружающей среды действию этих факторов (с назначением, как правило, предельно допустимых концентраций [dE/dF], [dW/dF] и доз [(dE/dF)dt], [(dW/dF)dt], [dI/dt], уровней уязвимости и повреждения).
55. Характеристика методов расчета оценки рисков технического регулирования разной природы
Методы оценки риска причинения вреда опираются на феноменологический, детерминистский или вероятностный подход.
55.1. Феноменологический подход объединяет группу методов, базирующихся на определении возможности или невозможности протекания аварийных процессов, исходя из результатов анализа условий, связанных с реализацией тех или иных законов природы. Этот подход обеспечивает надежные результаты, если только рабочие состояния или процессы таковы, что можно с достаточным запасом достоверности определить текущее состояние компонентов рассматриваемого объекта. Феноменологический подход мало пригоден для анализа разветвленных аварийных процессов, развитие которых зависит от надежности тех или иных элементов объекта.
55.2. Детерминистский подход объединяет группу методов, которые предусматривают анализ последовательности этапов развития процессов, начиная от исходного события через последовательность предполагаемых стадий изменения состояния элементов объекта до установившегося конечного состояния объекта. Детерминистский подход обеспечивает наглядность и психологическую приемлемость, так как дает возможность выявить основные факторы, определяющие ход процесса. Этот подход обладает следующим недостатком: существует потенциальная возможность упустить из анализа какие-либо важные цепочки событий при развитии опасных событий.
55.3. Вероятностный подход объединяет группу методов, в рамках которых риск рассматривается как сочетание вероятности возникновения вреда (ущерба) и тяжести этого вреда. При этом анализируются разветвленные цепочки событий и отказов элементов объекта, выбирается подходящий математический аппарат и оценивается вероятность наступления вреда (ущерба). Основные ограничения вероятностного подхода связаны с недостаточностью сведений о параметрах распределения случайных величин, применяемых в расчетах, а также с недостаточностью сведений о процессах развития опасных ситуаций. Кроме того, применение упрощенных расчетных схем снижает достоверность получаемых оценок риска.
56. Оценка риска является итерационным процессом: общая оценка риска позволит сделать вывод о том, не превышен ли допустимый риск. В случае, если допустимый риск превышен, реализуются корректирующие мероприятия, после их внедрения процесс оценки риска повторяется. И так до тех пор, пока не будет достигнут указанный допустимый риск.
57. Риски, связанные с определенной ситуацией или определенным техническим процессом, описываются комбинацией следующих элементов:
вероятности нанесения ущерба, которая зависит от:
а) частоты и продолжительности воздействия опасности на людей, животных, растительный мир;
б) вероятности возникновения опасной ситуации;
в) технических и человеческих возможностей избежать или ограничить возможный ущерб.
Элементы оценки риска приведены в приложении N 2.
Во многих случаях эти элементы не могут быть точно определены, а могут быть только оценены. В наибольшей степени это относится к вероятности нанесения ущерба. В некоторых случаях тяжесть возможного ущерба не может быть выражена количественно.
Ниже перечислены характеристики риска, которые целесообразно учитывать при оценке риска:
а) Тяжесть возможного ущерба (последствия):
3) по объему (число пострадавших).
б) Вероятность нанесения ущерба:
1) Частота и продолжительность воздействия опасности:
необходимость доступа в опасную зону;
время, проведенное в опасной зоне;
число людей, подверженных опасности;
частота попадания в опасную зону.
2) Вероятность возникновения опасной ситуации:
вероятность безотказной работы или другие статистические данные;
прецеденты процессов развития опасной ситуации;
сравнение рисков (при необходимости).
3) Возможность исключения или ограничения ущерба:
3.1) при использовании продукции:
неквалифицированным пользователем,
3.2) при развитии опасной ситуации:
3.3) на основе представлений о возникновении риска с учетом:
3.4) с учетом ловкости, рефлекса:
возможно при определенных условиях,
3.5) с учетом практического опыта и знаний:
о данной конкретной продукции,
в) Аспекты, принимаемые во внимание при оценке элементов риска.
1) Лица, подверженные опасности.
Следует принимать во внимание всех людей, подвергаемых опасности.
2) Тип, частота и продолжительность подверженности опасности.
Оценка подверженности опасности, включая долговременное воздействие, требует анализа и учета всех видов использования продукции.
Учитываются ситуации, при которых необходимо отключать защитные устройства.
3) Взаимосвязь между подверженностью опасности и ее последствиями.
Учитываются последствия, связанные с накоплением опасности, и содействующие факторы.
взаимодействие человека с продукцией;
способность сознавать риск в данной ситуации, которая зависит от обучения, опыта или способностей.
5) Надежность защитных мероприятий.
Если защитные меры включают организацию работ, правильное поведение, внимательность, применение персональных средств защиты, мастерство или навык, то при оценке риска учитывается относительно низкая надежность этих средств по сравнению с техническими мерами.
6) Возможность игнорирования мер безопасности.
Желание обойти меры безопасности возникает, когда:
мера безопасности снижает производительность или мешает другим видам деятельности;
меру безопасности трудно применить;
мера безопасности не признана пользователем.
7) Возможность установки защитных устройств.
58. Ниже более подробно рассмотрены характеристики методов оценки риска причинения вреда с учетом положений ГОСТ Р ИСО/МЭК 31010-2011 "Менеджмент риска. Методы оценки риска" для машинотехнической продукции.
При анализе последствий определяют характер и тип воздействия, которое может произойти при возникновении конкретного события, ситуации или обстоятельств. Событие может оказать несколько воздействий различной значимости, повлиять на безопасность людей, в том числе, персонала, причинить вред окружающей среде, вызвать иные негативные последствия. Виды последствий, которые необходимо проанализировать, определяют при установлении области применения методов оценки риска.
58.2. Анализ последствий может изменяться от простого описания результатов до детализированного количественного моделирования ситуации, процессов и анализа уязвимостей.
Воздействия могут иметь небольшие последствия, но высокую вероятность появления или значимые последствия и низкую вероятность появления, а также любой промежуточный вариант. В некоторых случаях целесообразно анализировать только события с очень тяжелыми последствиями, поскольку именно эти события вызывают наибольшее беспокойство. В других случаях важно проанализировать отдельно последствия с высокой и низкой значимостью в отношении вреда. Например, часто повторяющиеся, незначительные по воздействию события могут иметь большие совокупные или долгосрочные последствия, а также рассматриваться как предвестники событий с очень тяжелыми последствиями.
58.3. Анализ и оценка вероятности
Для оценки вероятности обычно применяют следующие три общих подхода, которые могут быть использованы как самостоятельно, так и совместно:
а) использование соответствующих баз данных для идентификации события или ситуации, произошедших в прошлом и допускающих возможность экстраполяции вероятности их появления в будущем. Используемые данные будут относиться к рассматриваемым объектам технического регулирования или продукции, которая может быть признана аналогом объекта технического регулирования. Если в соответствии с имеющимися данными частота появления события очень низка, то все оценки вероятности будут иметь высокую неопределенность. Это характерно для ситуаций, вероятность появления которых близка к нулю, когда появление события, очень маловероятно.
б) использование для оценки вероятности события методов прогнозирования, таких как анализ дерева событий. Если базы данных недоступны или недостоверны, то для оценки вероятности необходимо провести анализ надежности объекта технического регулирования на основе опыта эксплуатации и из опубликованных источников данных.
в) использование экспертных оценок в систематизированном и структурированном процессе оценки вероятности. Для получения экспертных оценок следует использовать всю доступную информацию, включая базы данных, сведения об особенностях функционирования объекта технического регулирования, экспериментальные данные и так далее.
59. Виды оценки рисков технического регулирования
Как было отмечено выше, риск причинения вреда зависит от следующих факторов: последствий (тяжести) возможного ущерба (вреда), связанных с реализацией опасностей, характерных для объекта технического регулирования, и частоты и продолжительности воздействия опасности, вероятности возникновения опасной ситуации и возможности исключения или ограничения ущерба.
Чем более подробно и точно охарактеризованы эти элементы риска, тем более корректна оценка риска. Чем меньше возможных, присущих данному объекту технического регулирования видов опасности рассмотрено при анализе риска, тем менее точной получается оценка риска. При этом, однако, если какой-либо вид опасности на практике, скорее всего не может реализоваться, то его нецелесообразно включать в анализ, так как вероятность возникновения опасной ситуации исключительно мала. Кроме того, зачастую отсутствие достоверных данных о вероятности возникновения конкретной опасной ситуации, не позволяет включить в анализ этот вид опасности. Это может привести к потере точности оценки риска. Последнее обстоятельство предопределяет необходимость проведения оценки риска (как процесса) группой специалистов разного профиля, что позволяет уточнить отмеченные факторы оценки риска.
Степень глубины и детализации оценки зависит от конкретной ситуации, доступности достоверных данных и целей применения полученных оценок риска.
59.1. Виды оценки риска, получаемой в процессе анализа, могут быть качественными, количественными или смешанными.
59.1.1. При качественной оценке риска определяют последствия, вероятность опасной ситуации и уровень риска по шкале "высокий", "средний" и "низкий" или по другой качественной шкале, характеризующей указанные факторы риска в вербальной форме. Результирующая оценка риска также выражается в качественной шкале. Например, алгоритм вывода оценки риска может быть задан следующим образом:
если вероятность появления опасной ситуации "высокая" и последствия этой ситуации "высокие", то риск причинения вреда (при данной опасной ситуации) "высокий";
если вероятность появления опасной ситуации "высокая" и последствия этой ситуации "средние", то риск причинения вреда (при данной опасной ситуации) "высокий";
если вероятность появления опасной ситуации "высокая" и последствия этой ситуации "низкие", то риск причинения вреда (при данной опасной ситуации) "средний";
если вероятность появления опасной ситуации "средняя" и последствия этой ситуации "высокие", то риск причинения вреда (при данной опасной ситуации) "высокий";
если вероятность появления опасной ситуации "средняя" и последствия этой ситуации "средняя", то риск причинения вреда (при данной опасной ситуации) "средний";
если вероятность появления опасной ситуации "средняя" и последствия этой ситуации "низкие", то риск причинения вреда (при данной опасной ситуации) "низкий";
если вероятность появления опасной ситуации "низкая" и последствия этой ситуации "высокие", то риск причинения вреда (при данной опасной ситуации) "средняя";
если вероятность появления опасной ситуации "низкая" и последствия этой ситуации "средние", то риск причинения вреда (при данной опасной ситуации) "средняя";
если вероятность появления опасной ситуации "низкая" и последствия этой ситуации "низкие", то риск причинения вреда (при данной опасной ситуации) "низкий".
Обобщая анализ для всех опасных ситуаций, присущих данному объекту технического регулирования, делается окончательная оценка в качественной форме.
59.1.2. При количественной оценке рассчитывают значимость и стоимость последствий (ущерб), их вероятности и получают значение уровня риска в определенных единицах ущерба. Полная количественная оценка не всегда возможна из-за недостаточной информации об анализируемом объекте технического регулирования, недостатка исходных данных и тому подобного или потому, что трудозатраты на количественный анализ слишком велики.
В случае применения количественного анализа необходимо иметь в виду, что значения вычисленного риска являются только оценкой, то есть случайной величиной, зависящей от полноты анализа, точности исходных данных для расчета и других факторов. Поэтому этой оценке присуща неопределенность, которую необходимо согласовать с уровнем точности используемых данных.
Для значительной части продукции различной степени сложности опасная ситуация может быть связана не столько с предельными ситуациями (авариями, отказами), сколько со случаем, обусловленным выходом некоторых характеристик объекта за предельные значения, то есть несоответствиями. Такие несоответствия не всегда можно идентифицировать и оценить, что вносит дополнительную неопределенность в количественную оценку риска.
Уровни риска выражаются в соответствующих терминах (шкалах) для конкретного вида риска в наиболее удобной форме. В некоторых случаях значение риска может быть выражено в виде распределения вероятностей диапазона последствий.
Может оказаться, что в отношении определенных опасных ситуаций для рассматриваемого объекта технического регулирования можно сделать только качественную оценку, а в отношении других опасных ситуаций для этого же объекта в силу наличия необходимой информации риск причинения вреда можно количественно оценить. В этом случае говорят о смешанной оценке риска причинения вреда.
60. Методические основы расчета оценки рисков технического регулирования разной природы
Для оценки риска причинения вреда используются сведения о результатах эксплуатации и испытаний продукции, публикации, базы данных, исследования рынка, мнения специалистов и экспертов.
Информация для оценки рисков включает:
область использования продукции;
сведения об источниках потенциальной опасности;
сведения о конструкции, применяемых материалах и веществах;
сведения о несчастных случаях, заболеваниях, происшествиях, связанных с применением продукции;
сведения об опасных ситуациях для аналогичных видов продукции.
Отсутствие или недостаточность информации об опасностях не дает оснований для суждений о небольшой величине риска.
Область использования продукции включает:
все стадии жизненного цикла продукции;
весь диапазон применения продукции, включая возможное неправильное применение и функционирование;
весь диапазон предполагаемого использования продукции (например, промышленное, непромышленное, в домашних условиях);
предполагаемых потребителей с их уровнем образования, опытом или способностями с учетом пола, возраста, с различными физическими возможностями:
подверженность других лиц опасности, если это можно предвидеть.
Идентификация опасностей обеспечивает основу для оценки рисков. Следует установить все возможные опасности, опасные ситуации и события, связанные с использованием продукции. Для всех видов продукции следует определить виды опасностей и для каждой группы однородной продукции состав опасностей на всех стадиях ее жизненного цикла.
61. Методы оценки рисков объектов технического регулирования разной природы
КонсультантПлюс: примечание.
Нумерация подпунктов дана в соответствии с официальным текстом документа.
61.2. Метод экспертных оценок (экспертный метод).
Экспертные оценки представляют собой подход, в котором не используется напрямую математический анализ как средство принятия решения.
Метод экспертной оценки может использоваться в тех случаях, когда формальные методы слишком сложны и исходная база данных недостаточна для получения однозначного аналитического решения. Кроме того, с помощью формальных методов трудно учитывать особенности социально-психологической ситуации и другие особенности, не укладывающиеся в схему, например баланса "затраты - выгода".
Применение экспертных оценок требует анализа их объективности и надежности. С одной стороны, нет гарантий, что полученные оценки достоверны, а с другой - существуют значительные трудности при проведении опроса экспертов и обработке полученных данных.
Методы проверочного листа, контрольных карт и "Что будет, если..?" или их комбинация относятся к группе методов качественных оценок опасности, основанных на изучении соответствия условий эксплуатации объекта или проекта требованиям безопасности.
61.3. Предварительный анализ опасности PHA (Preliminary Hazard Analysis) - индуктивный метод, назначение которого состоит в том, чтобы идентифицировать для всех этапов эксплуатационного периода указанной системы /подсистемы/ компонент факторы опасности, опасные ситуации и опасные события, которые могли бы привести к несчастному случаю. Метод позволяет идентифицировать возможность несчастного случая и качественно оценить степень возможного повреждения или вреда для здоровья. Затем даются предложения о мерах по обеспечению безопасности и результат их применения.
Анализ РНА обновляется в течение выполнения этапов проектирования, изготовления и испытания, чтобы обнаружить новые опасности и внести исправления в случае необходимости.
Описание полученных результатов может быть представлено различными способами (например, в виде таблицы или древовидной схемы).
61.4. Метод "что - если" (SWIFT). Метод является индуктивным, обычно используется для относительно простых приложений, применяется на начальных этапах анализа риска, когда рассматриваются вопросы проектирования, размещения, эксплуатации опасных объектов и их выводе из эксплуатации. На каждом этапе анализа формулируются вопросы "что, если?", и на них даются ответы, чтобы оценить влияние отказов компонентов систем или методических ошибок персонала на возникновение факторов опасности.
Для сложных применений метод "что - если" может быть наилучшим образом применен с помощью "проверочного листа" и соответствующего распределения работ, чтобы определенные аспекты процесса поручить персоналу, имеющему наибольший опыт в оценке этих аспектов. При этом действия оператора и его компетентность в работе тщательно проверяются. Действия персонала и его профессионализм аттестуются. Оцениваются пригодность оборудования, конструкция машины, ее системы управления и средства безопасности. Рассматривается влияние обрабатываемого материала, и отчеты об эксплуатации и техническом обслуживании тщательно проверяются.
Результатом проверочного листа является перечень вопросов и ответов о соответствии опасного объекта требованиям безопасности и указания по их обеспечению. Метод проверочного листа отличается от "Что будет, если..?" более обширным представлением исходной информации и представлением результатов о последствиях нарушений безопасности.
В общем случае осуществляется оценка процесса с помощью "проверочного листа" до тех пор, пока процесс не будет безопасным.
Эти методы наиболее просты (особенно при обеспечении их вспомогательными формами, унифицированными бланками, облегчающими на практике проведение анализа и представление результатов), относительно нетрудоемки (результаты могут быть получены одним специалистом в течение одного дня) и наиболее эффективны при исследовании безопасности объектов с известной технологией.
Каждый технологический процесс характеризуется некоторым набором переменных процесса, отклонения которых от своих рекомендованных значений могут приводить к непредвиденным химическим реакциям, превышению рабочего давления и (или) температуры и как следствие - к повреждению (разрушению) технологического оборудования. Для оценки устойчивости процесса используют различные методы, одним из которых является метод контрольных карт.
Контрольные карты процесса позволяют визуально контролировать соответствующие переменные параметры процесса и определять появление систематических отклонений. Несмотря на свою простоту, контрольные карты являются достаточно надежным и эффективным методом, позволяющим выявлять отклонения от нормального хода процесса, вместе с тем они не используются для анализа технологических установок на стадии их проектирования.
61.5. Метод влияния человеческого фактора (Human Reliability Analysis - HRA) предназначен для качественной оценки событий, связанных с ошибками персонала. Он также может быть использован для разработки рекомендаций по снижению вероятности таких ошибок.
Ошибка персонала - это действие, которое выполняется или не выполняется при некоторых условиях. Это могут быть физические действия (поворот рукоятки) или действия, связанные с умственной деятельностью (диагностика отказов или принятие решения).
HRA включает идентификацию условий, которые вызывают ошибки людей и оценку вероятностей таких ошибок. Преднамеренные действия в данном анализе в расчет не принимаются.
Для анализа ошибок персонала используют различные методики, содержащие:
определение перечня задач (действий), которые решает (выполняет) или будет решать (выполнять) оператор;
представление с помощью декомпозиции каждой такой задачи (действия) в виде комбинации элементарных действий в целях выявления среди них наиболее подверженных ошибкам и определения точек взаимодействия оператора и системы;
использование данных, получаемых из записей о предшествующих событиях;
определение наличия условий, влияющих на частоту ошибок, к которым относятся стрессы, уровень тренированности и качество систем отображения информации.
61.6. Метод оценки риска "доза - эффект" или "доза - воздействие"
Метод предполагает реализацию следующих этапов:
Формулировка проблемы, включая установление области применения объекта технического регулирования оценки путем определения целевых групп населения и типов опасностей.
Идентификация опасностей, включая идентификацию всех возможных источников вреда для целевой группы населения от исследуемых опасностей. Идентификация опасностей обычно основана на знаниях экспертов и сведений в опубликованных источниках.
В качестве источников информации возможно использовать базы данных ATSDR, IRIS, публикации в рецензируемых журналах, включенных в базы Web of Science, Scopus, отчеты международных организаций (например, Всемирная организация здравоохранения, Комиссия Codex Alimentarius).
Анализ опасностей, включая исследование характера и природы опасностей и их взаимодействия с объектом воздействия. Например, при исследовании воздействия на человеческий организм химических веществ, опасности могут включать в себя острую и хроническую токсичность, возможность повреждения дезоксирибонуклеиновой кислоты (ДНК), вызывающего онкологические заболевания, нарушения эмбрионального развития и репродукции человека. Для каждого опасного воздействия определяют величину воздействия (Воздействие), совокупность воздействующих опасностей, которым подвергается целевая группа населения (Дозу), а также, по возможности, механизм этого опасного воздействия. Необходимо отметить уровни, на которых нет заметного воздействия (NOEL) и нет заметного отрицательного воздействия (NOAEL). Эти уровни иногда используют в качестве критериев приемлемости риска.
Для оценки экспозиции химических веществ используют результаты испытаний и строят кривую Доза - Воздействие (приведена в приложении N 3). Данные обычно получают на основе испытаний на животных или из экспериментов на искусственно выращенных тканях или клетках животных.
Воздействие других опасностей, таких как воздействие микроорганизмов или изменение биологического вида, может быть определено на основе данных наблюдений и эпидемиологических исследований. После того как характер взаимодействия возбудителей болезней или паразитов с объектом исследования определен, оценивают вероятность того, что в результате подверженности конкретному виду опасности будет нанесен конкретный уровень вреда.
Анализ экспозиции, включая исследование того, как опасное вещество или его остатки могут воздействовать на целевую группу населения и в каком количестве. Данный этап часто содержит анализ путей распространения опасностей, препятствующих барьеров и факторов, влияющих на уровень экспозиции. Например, при исследовании химических выбросов анализ экспозиции будет включать в себя: исследование того, насколько велика область распыления химических веществ, каким путем выбросы могут произойти и при каких условиях может возникнуть прямое воздействие на людей и животных, сколько химических веществ осядет на растения, каковы пути распространения ядохимикатов, попавших в грунт, могут ли эти химические вещества накапливаться в живых организмах и в грунтовых водах. Анализ экспозиции может содержать исследование паразитов, попадающих из других регионов, пути их распространения и воздействия на объекты живой природы.
Характеристика риска, включающая сбор и обобщение полученной информации на этапах анализа опасностей и анализа экспозиции и оценку вероятности последствий в случае совместного воздействия опасностей. В ситуации с большим количеством опасностей и путей их распространения может быть проведен их начальный анализ, а затем детальный анализ опасностей и экспозиции. Анализ риска выполняется на основе общих сценариев риска.
61.7. Метод оценки риска HAZOP (метод Hazard and Operability Study)
В процессе применения метода оценки риска HAZOP используют проектную документацию и требования к рассматриваемому объекту технического регулирования, структуру объекта технического регулирования, проводят анализ функционирования каждой из этих частей, чтобы обнаружить, какие отклонения от намеченного исполнения могут произойти, что может быть причиной возможных отклонений и какова вероятность их последствий.
Этих целей достигают путем систематического исследования того, как каждая часть объекта технического регулирования реагирует на изменения основных параметров. Систематическое исследование проводят с применением набора управляющих слов. Управляющие слова могут быть подобраны для конкретного объекта технического регулирования или могут быть использованы общие управляющие слова, охватывающие все типы отклонений.
Часто используемые управляющие слова для технических систем, такие как "слишком рано", "слишком поздно", "больше", "меньше", "слишком долго", "слишком быстро", "неправильное направление", "неправильная цель", "неправильное действие" могут быть использованы для идентификации ошибок оператора. Пример управляющих слов исследования HAZOP приведен в приложении N 4.
Этапы исследования HAZOP включают в себя:
назначение лица, наделенного необходимыми ответственностью и полномочиями для проведения исследования HAZOP;
определение целей и области применения исследования;
установление набора ключевых и управляющих слов для исследования;
формирование группы HAZOP: в эту группу обычно включают экспертов по основным и смежным дисциплинам, проектировщиков и производственный персонал, способных провести соответствующую техническую экспертизу и оценить воздействие отклонений от намеченного или существующего проекта. Рекомендуется включать в группу персонал, который непосредственно не вовлечен в работы по объекту технического регулирования, чтобы обеспечить беспристрастность оценки;
определение требуемой документации и ее представление (сбор).
На совещании группа HAZOP проводит следующие действия:
осуществляет декомпозицию объекта технического регулирования на элементы, используя соответствующую структурную схему, для проведения анализа;
согласовывает задачи проекта для каждого выделенного элемента объекта технического регулирования и затем для каждого элемента применяет управляющие слова, одно за другим, что позволяет выявить возможные отклонения, которые могут привести к нежелательным результатам;
в случае идентификации нежелательных результатов согласовывает причину и последствия для каждого события и предлагает способы их купирования для предотвращения повторного появления или смягчения возможных последствий, если они неизбежны;
регистрирует и идентифицирует протоколы обсуждений и предложенные способы оценки риска.
Метод не предполагает получение количественной оценки риска. Может быть использован для оценки рисков здоровью населения при воздействии химических и биологических факторов при определенной адаптации, связанной с заменой структурной схемы объекта технического регулирования, например, рецептурой.
61.8. Анализ дерева неисправностей (FTA - Fault Tree Analysis)
Выделяют следующие этапы разработки диаграммы дерева неисправностей:
определение конечного события, которое необходимо проанализировать. Это может быть отказ или более общие последствия отказа;
идентификация возможных причин или видов отказов, приводящих к конечному событию, начиная с конечного события;
анализ идентифицированных видов и причин отказа для определения того, что конкретно привело к отказу;
последовательная идентификация нежелательного функционирования объекта технического регулирования с переходом на более низкие уровни объекта технического регулирования, пока дальнейший анализ не станет нецелесообразным. В технической системе это может быть уровень отказа элементов. События и факторы на самом низком уровне анализируемого объекта технического регулирования называют базисными событиями;
оценка вероятности базисных событий (если применимо) и последующий расчет вероятности конечного события. Для обеспечения достоверности количественной оценки следует показать, что полнота и качество входных данных для каждого элемента достаточны для получения выходных данных необходимой достоверности. В противном случае дерево неисправностей недостаточно достоверно для анализа вероятности, но может быть полезным для исследования причинно-следственных связей.
Кроме количественной оценки вероятности конечного события метод позволяет идентифицировать набор минимальных сечений, приводящих к конечному событию, и оценить их влияние на конечное событие (отказ).
За исключением простых случаев, для построения диаграммы обычно применяют пакеты соответствующих прикладных программ, позволяющие производить анализ в ситуациях, когда присутствуют повторяющиеся события в нескольких местах дерева неисправностей и когда необходимо вычислить минимальные сечения. Использование программного обеспечения гарантирует последовательность и правильность выполнения метода и возможность его верификации.
Пример метода FTA приведен в приложении N 5.
61.9. Анализ дерева событий (ETA - Event Tree Analysis)
Основная задача анализа - выделение наиболее опасных сценариев, которые вносят наибольший вклад в риск причинения вреда. Оценка проводится группой специалистов, компетентных в предметной области.
Составляется полный перечень возможных потенциально опасных событий, рассматриваемых как исходные (инициирующие, начальные) события (ИС) для дальнейшего построения дерева событий.
Рассматриваются внутренние и внешние ИС. Внутренние события вызываются отказами элементов объекта, ошибочными действиями персонала, а внешние - воздействиями, связанными с природными явлениями или деятельностью человека.
Исходными данными для выполнения этого этапа служат анализы нарушений аналогичных объектов.
Графически дерево событий изображается в виде таблицы (формат таблицы для построения дерева событий приведен в приложении N 6).
Дерево событий строится на основе последовательного рассмотрения успешного или неуспешного выполнения функций элементами объекта, которые могут быть вовлечены в процесс протекания событий после наступления ИС, а также успешного или неуспешного выполнения функций персоналом объекта. Успешное выполнение функций обозначается "ступенькой" вверх, неуспешное - ступенькой вниз. Узлы дерева событий (точки ветвления) располагаются посредине соответствующих колонок таблицы 4 (колонка 2), отражающих промежуточные состояния.
Следующий этап заключается в описании конечных состояний и анализе всех возможных видов ущерба, связанных с конечным состоянием, и предусматривает следующие три шага: описание конечных состояний; оценка последствий: классификация и группировка.
Описание конечных состояний заключается в неформальной подробной характеристике каждого из исходов, представленных на дереве событий.
Оценка последствий связана с анализом прямых и косвенных ущербов при конечном состоянии. Если в результате какого-либо исхода ущербы исчисляются в различных единицах, они приводятся к одному эквивалентному ущербу.
Проведенный последовательный анализ исходов на дереве событий позволяет каждому конечному состоянию поставить в соответствие величину эквивалентного ущерба.
В результате формируется колонка 3 таблицы, приведенной в приложении N 6, которая может иметь, например, для 2-х промежуточных состояний вид, представленный в приложении N 7.
Если для некоторого исходного события I0 можно выделить n последовательных нарушений, которые пронумерованы как E1,...,En, то нарушение может наступить при реализации любой из n несовместных последовательностей. Таким образом, в вероятностном смысле нарушение - это событие, которое является суммой несовместных событий E1,...,En.
Следовательно, условная вероятность нарушений описывается формулой
где Q(Ei/I0) - вероятность реализации i-й последовательности для данного ИС.
Для вычисления полной безусловной вероятности R(I0) нарушения необходимо учесть вероятность P(I0) наступления ИС. Тогда по формуле полной вероятности может быть рассчитана вероятность нарушения R(I0) при наступлении исходного события I0:
где P(I0) - вероятность наступления исходного события I0. Эту вероятность определяют, пользуясь результатами анализа баз данных или других проверенных (валидированных) источников информации.
Последнее выражение - это формула полной вероятности, которая характеризует безусловную вероятность наступления нарушения, то есть риск причинения вреда R.
Дерево событий строится с целью анализа последствий некоторого исходного (инициирующего, начального) события I0 (отказа элемента, ошибки персонала, внешнего события, например, повышение тока в цепи), которое изображается в основании дерева. Это исходное событие может привести (но может и не привести) к последующим событиям, непосредственно обусловленным ИС, которые называются событиями первого уровня. Каждое из событий первого уровня может вызвать (или не вызвать) последующие события, непосредственно им обусловленные и, таким образом, определяет множество конечных состояний объекта, каждое из которых является реализацией определенных сочетаний промежуточных событий и может повлиять на процессы развития опасности, обусловленные ИС.
Построение дерева событий начинают с выбора начального (исходного) события. Это может быть инцидент, такой как взрыв пыли, или такое событие, как отказ элемента объекта технического регулирования.
Для каждой функции или системы чертят линии для отображения ее исправного состояния или отказа. Вероятность отказа может быть оценена для каждой такой линии. Данную условную вероятность оценивают, например, с помощью экспертных оценок или анализа дерева неисправностей. Таким образом, изображают различные пути развития событий от начального события.
Следует учитывать, что вероятности на дереве событий являются условными вероятностями, например, вероятность срабатывания разбрызгивателя системы пожаротушения, полученная при испытаниях в нормальных условиях, будет отличаться от вероятности срабатывания этой системы при возгорании, вызванном взрывом.
Каждая ветвь дерева характеризуется вероятностью того, что все события на этом пути произойдут. Поэтому вероятность результата (конечного состояния) вычисляют как произведение отдельных условных вероятностей и вероятности начального события при условии независимости событий. Пример дерева событий приведен в приложении N 8.
61.10. Анализ причин и последствий (соединение дерева событий с деревом неисправностей)
Анализ причин и последствий является сочетанием методов дерева неисправностей и дерева событий. Анализ начинают с рассмотрения исходного события и анализа его последствий, применяя сочетания логических элементов ДА/НЕТ. Эти элементы представляют собой условия, при которых система, разработанная для снижения последствий начального события, находится в работоспособном состоянии или в состоянии отказа. Причины условий анализируют с помощью метода дерева неисправностей. При этом следует использовать те же символы, что и при анализе дерева неисправностей, приведенные в приложении N 5.
Каждая точка ветвления на дереве событий сопровождается построением дерева неисправностей по правилам, рассмотренным в пункте 61.8 (Рисунок "Соединение дерева событий с деревом неисправностей" приведен в приложении N 9).
На рисунке, приведенном в приложении N 9, приняты следующие обозначения:
P(IE) - вероятность наступления инициирующего события;
P(FA) - вероятность отказа системы A;
P(FB) - вероятность отказа системы B;
,
,
,
- последствия реализации цепочки событий;
FA, FB - события, связанные со срабатыванием соответственно системы A и системы B.
Вместе с тем правоприменительная практика показала, что разработчики ТР в малой степени пользуются системой оценки рисков для выстраивания требований безопасности. Требования к продукции могут быть продиктованы не только предотвращением негативного влияния, но и сферой применения продукции, особым условиям использования и другим. Именно на основе отнесения продукции к различной категории опасности (риск наступления неблагоприятных событий высок, средний или низкий) устанавливается система оценки соответствия продукции обязательным требованиям. В связи с этим система оценки риска приведена в подготовленных в рамках данной работы методических рекомендациях в соотношении с выбором форм и схем оценки соответствия продукции обязательным требованиям.
61.11. Причинно-следственный анализ
Причинно-следственный анализ выполняется группой экспертов, имеющих знания и опыт по исследуемой проблеме.
Основными этапами причинно-следственного анализа являются:
установление следствия, которое необходимо проанализировать, и размещение его справа в соответствующем блоке диаграммы, например, отказ оборудования.
определение основных (главных) категорий причин и указание их в соответствующих блоках диаграммы Исикавы ("рыбья кость"). При анализе систем обычно выделяют такие категории причин, как: персонал, оборудование, рабочая среда, процессы. Категории определяют в соответствии с объектом исследования;
указание возможных причин для каждой основной (главной) категории на ветвях и ответвлениях для описания взаимосвязей между ними;
продолжение исследования путем итеративной постановки вопросов "почему?" или "что это вызвало?" для установления связей между причинами;
анализ всех ветвей и ответвлений, направленный на проверку последовательности и полноты выявленных причин, и их отношения к основному следствию;
идентификация наиболее вероятных причин данного следствия на основе согласованного мнения рабочей группы экспертов и доступных объективных свидетельствах.
Результаты представляют в виде диаграммы Исикавы. Диаграмма структурирована путем разделения причин на основные (главные) категории, представленные ребрами, и более мелкими причинами, представленными ответвлениями. Пример диаграммы Исикавы приведен в приложении N 10.
Изображение данной диаграммы в виде древовидной схемы аналогично дереву неисправностей, но обычно эту диаграмму строят слева направо, а не сверху вниз. Однако при применении данной диаграммы бывает затруднительно представить результат в количественном выражении и оценить вероятность главного события, поскольку причины в большей степени понимают как возможные факторы, которые могут вызвать рассматриваемое событие, а не отказы с известной вероятностью возникновения.
Причинно-следственную диаграмму обычно применяют для определения качественных оценок.
61.12. Анализ видов и последствий отказов и анализ видов, последствий и критичности отказов (FMEA - Failure Mode Effect Analysis/FMECA - Failure Mode Effect Criticality Analysis)
Метод FMEA/FMECA включает в себя следующие основные этапы.
а) Определение области применения и целей исследования.
б) Формирование рабочей группы.
в) Изучение объекта технического регулирования, для которого применяют метод FMEA/FMECA.
г) Деление объекта технического регулирования на элементы.
д) Определение функции каждого элемента.
е) Определение для каждого элемента:
возможных отказов и их причин;
механизмов, приводящих к данным видам отказа;
ж) Идентификация особенностей объекта технического регулирования, позволяющих компенсировать отказ.
КонсультантПлюс: примечание.
Нумерация подпунктов дана в соответствии с официальным текстом документа.
и) Для оценки критичности группа дополнительно классифицирует каждый из идентифицированных видов отказа в принятой шкале критичности. Рисунок к расчету критичности отказа приведен в приложении N 11.
Оценка риска в виде критичности отказов состоит в учете трех факторов: частоты (вероятности) отказа (опасности), возможности обнаружения дефекта (источника опасности) до начала эксплуатации и последствий отказа. Эти три фактора в совокупности и формируют критичность отказа. Чем выше значение частоты (вероятности) отказа, и/или последствия отказа, и/или ниже возможность обнаружения опасности до начала применения продукции по назначению, тем выше значение критичности.
61.12.1. Последовательность расчета критичности
Объект технического регулирования разбивается на элементы. Разбиение объекта технического регулирования на элементы зависит от информации относительно возможных отказов элементов. Пусть число элементов равно N.
Для каждого выделенного элемента продукции вычисляется критичность отказов Ci (i = 1, 2,..., N).
Критичность Ci для i-го элемента продукции рассчитывают по формуле
где B1i - оценка частоты (вероятности) наступления отказов;
B2i - оценка вероятности выявления отказов;
B3i - оценка тяжести ущерба от отказов (последствия отказов).
Если последствия отказов для элемента различны, критичность рассчитывают для самого тяжелого случая (ущерб максимален).
Значения коэффициентов B1, B2, B3 оцениваются экспертно по десятибалльной шкале. Рекомендуемые значения коэффициентов B1, B2 и B3 приведены в приложениях N 12, N 13, N 14.
При оценке характеристики частоты отказа (коэффициент B1) учитывают следующие факторы:
вероятность безотказной работы или другие статистические данные;
прецеденты процессов развития опасной ситуации;
Критичность отказов i-го элемента изменяется в диапазоне от 1 (1 · 1 · 1) до 1000 (10 · 10 · 10).
Существует несколько способов выполнения анализа критичности отказов.
Для исключения наиболее критичных (существенных) отказов целесообразно внедрить корректирующие действия.
Результаты выполнения метода FMEA/FMECA приводятся в виде отчета, который содержит:
подробное описание исследованного объекта;
способы, использованные для выполнения анализа;
предположения, сделанные в процессе выполнения анализа;
полученные результаты, включая заполненные контрольные листы;
критичность (если требуется) и методы, использованные для ее определения;
рекомендации для дальнейших исследований, изменения проекта или особенности, которые необходимо включить в планы проверок, испытаний и другое.
Критичность объекта технического регулирования может быть повторно оценена в другом цикле FMEA/FMECA, после того как все необходимые корректирующие действия завершены.
61.13. Методы количественного анализа риска, как правило, характеризуются расчетом нескольких показателей риска. Проведение количественного анализа требует высокой квалификации исполнителей, большого объема информации по аварийности, надежности оборудования, выполнения экспертных работ, учета особенностей окружающей местности, метеоусловий, времени пребывания людей в опасных зонах и других факторов.
В число количественных методов определения рисков и их параметров можно включить следующие разновидности методов: детерминированные; статистические; детерминировано-статистические; вероятностные; статистико-вероятностные; детерминировано-вероятностные; логико-вероятностные; методы нечетких множеств; бифуркационные; экспертные и другие.
Количественный анализ риска позволяет оценивать и сравнивать различные опасности по единым показателям, он наиболее эффективен:
на стадии проектирования и размещения опасного производственного объекта;
при обосновании и оптимизации мер безопасности;
при оценке опасности крупных аварий на опасных производственных объектах, имеющих однотипные технические устройства (например, магистральные трубопроводы);
при комплексной оценке опасностей аварий для людей, имущества и окружающей природной среды.
Количественные методы используют в том числе математическое моделирование, экспериментальные исследования, статистические данные.
- Гражданский кодекс (ГК РФ)
- Жилищный кодекс (ЖК РФ)
- Налоговый кодекс (НК РФ)
- Трудовой кодекс (ТК РФ)
- Уголовный кодекс (УК РФ)
- Бюджетный кодекс (БК РФ)
- Арбитражный процессуальный кодекс
- Конституция РФ
- Земельный кодекс (ЗК РФ)
- Лесной кодекс (ЛК РФ)
- Семейный кодекс (СК РФ)
- Уголовно-исполнительный кодекс
- Уголовно-процессуальный кодекс
- Производственный календарь на 2025 год
- МРОТ 2025
- ФЗ «О банкротстве»
- О защите прав потребителей (ЗОЗПП)
- Об исполнительном производстве
- О персональных данных
- О налогах на имущество физических лиц
- О средствах массовой информации
- Производственный календарь на 2026 год
- Федеральный закон "О полиции" N 3-ФЗ
- Расходы организации ПБУ 10/99
- Минимальный размер оплаты труда (МРОТ)
- Календарь бухгалтера на 2025 год
- Частичная мобилизация: обзор новостей
- Постановление Правительства РФ N 1875
, (1)
(2)
(3)
,
,