Локальное подавление

Метод локального подавления (локальной фильтрации) используется для микроданных в случаях, когда экстремальное значение (выделяющееся наблюдение) переменной или экстремальная комбинация значений переменных присутствуют в одном или более векторах данных. Экстремальное значение или экстремальная комбинация значений подавляется, так как их наличие значительно упрощает процедуру идентификации объекта, особенно в тех случаях, когда экстремальными являются значения косвенных идентификаторов. Используются два варианта метода подавления:

пропуск всех экстремальных значений или комбинаций значений, которые присутствуют в индивидуальных данных, и замена их на "пропущенное" значение. При этом пользователь статистики будет знать, что пропущено экстремальное значение, но не будет владеть реальной цифрой, так как не известна степень и направление "экстремальности", т.е. велико или мало экстремальное значение, и насколько оно велико или мало;

удаление всего вектора данных. Этот вариант используется в случае, когда данные содержат очень необычное значение или комбинацию значений, особенно в случаях, когда данный объект широко известен.

Оба варианта метода локального подавления производят отклонение данных, так как оценки величины, полученной на основе микроданных, в которых некоторые значения были подавлены, будет отличаться от оценки, рассчитанной на основе реальных данных.

Подавление, как и другие методы, основанные на сокращении данных, снижает качество данных для проведения анализа.